© alinamd - Fotolia.com
|
FRUCTOSE
ructose (umgangssprachlich Fruchtzucker, oft auch Fruktose, von lateinisch fructus ‚Frucht‘, veraltet Lävulose) ist eine natürlich vorkommende chemische Verbindung mit der Summenformel C6H12O6. Fructosen gehören als Monosaccharide (Einfachzucker) zu den Kohlenhydraten. Sie kommt in mehreren isomeren (anomeren) Formen vor. In diesem Artikel betreffen die Angaben zur Physiologie allein die D-Fructose. L-Fructose besitzt physiologisch keine und auch sonst nur geringe Bedeutung.
Fructose kommt in der Natur vor allem in Früchten wie Kernobst (Äpfel und Birnen zu je etwa 6 g/100 g), Beeren (beispielsweise Weintrauben 7,5 g/100 g), sowie in manchen exotischen Früchten (Granatapfel und Kaki) und im Honig (35,9–42,1 g/100 g) vor. Im Haushaltszucker (hergestellt aus Zuckerrüben oder Zuckerrohr) ist Fructose in gebundener Form enthalten: Rohr- oder Rübenzucker (Saccharose) ist ein Zweifachzucker, der aus je einem Molekül Glucose (Traubenzucker) und Fructose zusammengesetzt ist. Ein bedeutsamer Anteil bei der Zuckeraufnahme kommt aus industriell gefertigten Nahrungsmitteln, die mit Fructose angereicherten Sirup aus Maisstärke (high-fructose corn syrup, HFCS) enthalten.
|
| |
© womue - Fotolia.com
|
Physiologie
Im Darm wird Fructose von Menschen unterschiedlich gut, vor allem langsamer als Glucose, resorbiert. Dies liegt am passiven Transport durch spezielle Proteine, zum einen durch das so genannte GLUT5 (apikal, d. h. an der dem Darmlumen zugewandten Zelloberfläche), das der Fructose Zutritt zu den Darmzellen (Enterocyten) gewährt und zum anderen durch GLUT2 (basolateral, d. h. dem Blutkreislauf zugewandt), das der Fructose erlaubt, von den Darmzellen ins Blut zu gelangen. Glucose wird hingegen sekundär-aktiv (SGLT1, apikal), also unter Energieverbrauch, in die Zelle gepumpt. Dies geschieht reguliert über eine rückgekoppelte Hemmung. Im Gegensatz dazu fließt Fructose unreguliert ohne Energieaufwand entlang ihres Konzentrationsgradienten. Dies führt dazu, dass Fructose niemals vollständig aus der Nahrung aufgenommen wird. Vor allem bei Kleinkindern besteht daher die Gefahr, dass es bei zu hohen Fructosemengen in der Nahrung zu osmotischer Diarrhoe kommt.
D-Fructose wird in Zellen der Leber durch das Enzym Ketohexokinase in D-Fructose-1-phosphat umgewandelt, so kann sie die Zelle nicht mehr verlassen. Der Vorrat an energiereichen Phosphaten wird durch die Ketohexokinase „geplündert“: ATP → ADP → AMP und die AMP-Desaminase hochreguliert. Es fällt IMP an, das über den Purinabbau die Konzentration der Harnsäure ansteigen lässt. Fructose-1-phosphat zerfällt durch die Fructose-1-phosphat-Aldolase vermittelt in Glycerinaldehyd und Dihydroxyacetonphosphat. Nach Phosphorylierung kann Glycerinaldehyd (dann als Glycerinaldehyd-3-phosphat) in die Glykolyse eintreten. Bedeutsamer ist der Abfluss der Zerfallsprodukte in die Triglyceridsynthese. Triglyceride lagern sich als Depotfett an, aber auch als Fetttröpfchen zwischen den Myofibrillen der Muskulatur. Im Fettgewebe kann Fructose auch als Fructose-6-phosphat in die Glycolyse eintreten, wenn die Glykogenreserven erschöpft sind.
|
| |